Exam. Code : 103204
 Subject Code: 9035

B.A./B.Sc. $4^{\text {th }}$ Semester (Old Syllabus 2014) MATHEMATICS

Paper-II
(Number Theory)
Time Allowed-Three Hours] [Maximum Marks-50
Note :- Attempt FIVE questions in all selecting at least TWO questions each from Sections A and B. All questions carry equal marks.

SECTION-A

1. (a) Let $a \in Z$. Show that a^{2} leaves the remainder 0 or 1 when divided by 4 and hence show that 11111 is not perfect square.
(b) Show that $\frac{\mathrm{a}\left(\mathrm{a}^{2}+2\right)}{3}$ is an integer for all $\mathrm{a} \geq 1$.
II. (a) Prove that $(a, m)=(b, m)=1$ iff $(a b, m)=1$.
(b) Prove that there are an infinite number of primes of the form $4 n+3$. 5,5
III. (a) Verify that $2^{2^{5}}+1$ is divisible by 641 .
(b) Prove that if $2^{\mathrm{n}}-1$ is a prime, then n is prime.
IV. (a) If $p \geq 5$ is a prime number, then show that $\mathrm{p}^{2}+2$ is composite.
(b) Show that necessary and sufficient condition that a positive integer n can be divided by 3 is that the sum of its digits is divisible by 3.
V. (a) For any prime p, prove that

$$
(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)
$$

(b) Find the general solution of $39 x-56 y=11$.

SECTION-B

VI. (a) For any prime number p, prove that

$$
(p-1)!\equiv-1(\bmod p)
$$

(b) Solve the set of simultaneous congruencies $4 \mathrm{x} \equiv 3(\bmod 5), 5 \mathrm{x} \equiv 2(\bmod 6) . \quad 5,5$
VII. (a) If $\mathrm{m}>2$, then prove that $\phi(\mathrm{m})$ is even.
(b) Find the least positive integer that gives remainder $1,2,3$, when divided by $3,4,5$ respectively.
VIII. (a) If $\tau(\mathrm{n})$ denotes the number of positive divisors of n , then show that

$$
\prod_{d / n} d=n^{t(n) / 2}, \text { for an integer } n>1
$$

(b) Find the highest power of 18 that is contained in 500 !.

5,5
IX. (a) For any positive integer $\mathrm{n} \geq 1$, show that

$$
\sum_{d / n} \phi(d)=n
$$

(b) Verify Mobius Inversion formula for $\mathbf{n}=24$.

$$
5,5
$$

X. (a) Prove that the function μ is multiplicative.
(b) Evaluate τ and σ for $\mathrm{n}=3000$.

5,5

